Cleavage of the antithrombin III binding site in heparin by heparinases and its implication in the generation of low molecular weight heparin.
نویسندگان
چکیده
Heparin has been used as a clinical anticoagulant for more than 50 years, making it one of the most effective pharmacological agents known. Much of heparin's activity can be traced to its ability to bind antithrombin III (AT-III). Low molecular weight heparin (LMWH), derived from heparin by its controlled breakdown, maintains much of the antithrombotic activity of heparin without many of the serious side effects. The clinical significance of LMWH has highlighted the need to understand and develop chemical or enzymatic means to generate it. The primary enzymatic tools used for the production of LMWH are the heparinases from Flavobacterium heparinum, specifically heparinases I and II. Using pentasaccharide and hexasaccharide model compounds, we show that heparinases I and II, but not heparinase III, cleave the AT-III binding site, leaving only a partially intact site. Furthermore, we show herein that glucosamine 3-O sulfation at the reducing end of a glycosidic linkage imparts resistance to heparinase I, II, and III cleavage. Finally, we examine the biological and pharmacological consequences of a heparin oligosaccharide that contains only a partial AT-III binding site. We show that such an oligosaccharide lacks some of the functional attributes of heparin- and heparan sulfate-like glycosaminoglycans containing an intact AT-III site.
منابع مشابه
Further evidence that periodate cleavage of heparin occurs primarily through the antithrombin binding site.
Porcine mucosal heparin was fragmented into low-molecular-weight (LMW) heparin by treatment of periodate-oxidized heparin with sodium hydroxide, followed by reduction with sodium borohydride and acid hydrolysis. Gradient polyacrylamide gel electrophoresis analysis showed a mixture of heparin fragments with an average size of eight disaccharide units. 1D 1H NMR showed two-thirds of the N-acetyl ...
متن کاملHeparin binding domain of human antithrombin III inferred from the sequential reduction of its three disulfide linkages. An efficient method for structural analysis of partially reduced proteins.
Human antithrombin III (AT-III) was partially reduced under mild conditions in the absence or presence of low molecular weight heparin. Quantitation of reduced disulfide bonds was facilitated by the application of a water-soluble color reagent, 4-N,N-dimethylaminoazobenzene-4'-iodoacetamido-2'-sulfonic acid (S-DABIA). The study shows that the three disulfide linkages of AT-III can be sequential...
متن کاملPreparation, properties and preclinical pharmacokinetics of low molecular weight heparin-modified isoliquiritigenin-loaded solid lipid nanoparticle
Low molecular weight heparin-modified isoliquiritigenin-loaded solid lipid nanoparticle (LMWH-ISL-SLN) was developed for injective application. The morphological observation, particle diameter and zeta potential of LMWH-ISL-SLN were characterized using transmission electron microscopy (TEM) and a Malvern Zetasizer. Its entrapment efficiency (EE) and drug loading (DL) were determined by ultracen...
متن کاملOligosaccharide mapping of low molecular weight heparins: structure and activity differences.
Low molecular weight heparins from a variety of commercial sources were examined. These had been prepared by several methods including peroxidative cleavage, nitrous acid cleavage, chemical beta-elimination, enzymatic beta-elimination, and chromatographic fractionation. The molecular weight and polydispersity of these low molecular weight heparins showed greater differences than were observed f...
متن کاملPreparation, properties and preclinical pharmacokinetics of low molecular weight heparin-modified isoliquiritigenin-loaded solid lipid nanoparticle
Low molecular weight heparin-modified isoliquiritigenin-loaded solid lipid nanoparticle (LMWH-ISL-SLN) was developed for injective application. The morphological observation, particle diameter and zeta potential of LMWH-ISL-SLN were characterized using transmission electron microscopy (TEM) and a Malvern Zetasizer. Its entrapment efficiency (EE) and drug loading (DL) were determined by ultracen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 97 19 شماره
صفحات -
تاریخ انتشار 2000